
Discovery of design patterns
based on good practices

Rafael Barbudo Lunar

Dept. of Computer Science and Numerical Analysis

University of Córdoba, Spain

2nd Summer School on SBSE, University of Málaga 2017, June 28th-30th

Content

➢Introduction

➢Conceptual framework
✓Our approach in a nutshell

✓What do we do?

➢Proposed approach
✓Our approach in detail

➢Open issues

2/10

Introduction
Building software systems is not easy

How can we make it more accurate?

Best practices. Working method or set of working methods that are accepted as being the
best to use in a particular area, usually described formally.

➢ Compliance with standards
➢ Documented code
➢ UML models
➢ Design patterns (DP)

Using them is not trivial We must learn how
they have been used

Mining Software
Repositories

Still difficult

Can we learn how other developers are using Design Patterns in their projects?
Can we use this knowledge to assist the engineer?

Software systems are COMPLEX

Their developing process TOO…

3/10

Conceptual framework
Our approach in a nutshell

Learn from design

patterns

Look for candidate

structures

Search for

similarities

Characterisation:
✓ Software metrics
✓ Relationships
✓ Internal structure

Known design pattern
structure:
✓ Roles involved
✓ Roles relationships
✓ Roles cardinality

Useful knowledge
allow us to know if:
✓ Is it similar?
✓ Could it be a pattern?

How are we going to learn?

Mining Software
Repositories

Data mining
Mining frequent itemsets

4/10

Conceptual framework
What do we do?

The case of the Adapter
design pattern

Gamma et al. (1995)

How can we represent this knowledge?

✓ Target sets methods’ interface
✓ Adapter implements methods with the interface
✓ Adapter overrides/wraps method from adaptee
✓ Adapter only adapts the interface
… many others

type(target) = interface AND connect(adapter, target) = implements AND

AND WMC(adapter) < 0.5

5/10

callMethodOf(adapter, adaptee)

connect(adapter, adaptee) = extends AND type(target) = interface

connect(adapter, target) = implements

AND

Proposed approach
Our approach in detail (I)

Grammar
<pattern> ::= <cmp> | AND <pattern> <cmp>

<cmp> ::= <catCmptr> <catUnProperty> <role>

| <catCmptr> <catBinProperty> <role> <role>

| <numCmptr> <metric> <role>

| <boolCmptr> <role>

<catCmptr> ::= equal | notEqual

<catUnProperty> ::= unProperty value

<catBinProperty> ::= binProperty value

<numCmptr> ::= > | < | ≥ | ≤

<boolCmptr> ::= boolProperty value

<metric> ::= LOC valueLOC | WMC valueWMC

<role> ::= adapter | adaptee | client | target

Itemsets
type(target) = interface AND connect(adapter, target) = implements AND

WMC(adapter) < 0.5 AND connect(adapter, adaptee) = extends
…

Labelled design patterns
Adapter 1:

client
net.nutch.db.WebDBWriter.PageInstructionWriter

target
net.nutch.io.Writable

adapter
net.nutch.db.Page

adaptee
java.lang.CloneableAdapter

…

P-mart
repository

Learning phase

✓G3P algorithm
✓Stores the best itemsets
✓Custom fitness measures
✓Parse source code

6/10

Property Values

connect
type
isSubclass
privateConst

extends, implements, notLinked
concreteClass, abstractClass, interface
true, false
true, false

Proposed approach
Our approach in detail (II)

Source code

Structural description

Candidates
Pattern1
Adapter: net.sf.msr.blocks.ClassA
Adaptee: net.sf.msr.blocks.ClassB
Target: net.sf.msr.blocks.ClassC
Client: net.sf.msr.blocks.ClassD

…

Extraction phase

✓Look for candidates
✓Pattern structure is known
✓Subgraph algorithm
✓Isomorphic problem

7/10

Proposed approach
Our approach in detail (III)

Itemsets
type(target) = interface AND connect(adapter, target) = implements AND

WMC(adapter) < 0.5 AND connect(adapter, adaptee) = extends
…

Candidates
Pattern1
Adapter: net.sf.msr.blocks.ClassA
Adaptee: net.sf.msr.blocks.ClassB
Target: net.sf.msr.blocks.ClassC
Client: net.sf.msr.blocks.ClassD

…

Extraction phase

➢ Use the knowledge from previous phases

✓Use the acquired
knowledge

✓Filter based on strong
itemsets

✓Look for similarities

Discovered design patterns
Candidate1: X
Candidate2: V

…

Candidate3: X
Candidate4: X

8/10

Open issues
The road ahead

➢Which are the most interesting software metrics to be studied?

There are a lot … DIT, LCOM, CBO, NOC…

➢Can roles have different cardinalities?

✓ Some roles could not be present
✓ Some roles could be played by more than one element

Extraction phase becomes
more difficult

➢Are data good and enough?

✓ P-mart repository has few labelled instances
✓ Are different these patterns implemented by different developers?

• Cultural aspects
• Sort of project
• Different communities

9/10

Discovery of design patterns
based on good practices

Any question?

2nd Summer School on SBSE, University of Málaga

Conceptual framework
Previous work

➢Design pattern detection based on software metrics

Chihada et al (2015)

✓ Extract metrics from labelled design patterns
✓ Build a classification model
✓ Search candidates based on the structure

Conceptual framework
Previous work

➢Design pattern detection based on categorical properties

Why do not combine? Oruc et al (2016)

✓ Build enriched graph from code
✓ Search subgraphs based on the

edge labels
✓ Manually defines the pattern

structure

✓ Software metrics
✓ Relationships
✓ Internal structure
… many others

Remember ✓ Flexible
✓ Extensible

Grammar

